import json, pandas as pd import tensorflow as tf import pandas as pd import numpy as np from sklearn.model_selection import train_test_split json_string=''' { "Unnamed":{ "0":"1", "1":"2", "2":"3", "3":"4", "4":"5" }, "FB":{ "0":"230.1", "1":"44.5", "2":"17.2", "3":"151.5", "4":"180.8" }, "TV":{ "0":"37.8", "1":"39.3", "2":"45.9", "3":"41.3", "4":"10.8" }, "Newpaper":{ "0":"69.2", "1":"45.1", "..
import sklearn as sk import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import pandas as pd df=pd.read_json("A0007IT.json") import matplotlib.pyplot as plt import matplotlib.font_manager as fm plt.rc('font', family='NanumGothicCoding') 4. 분포도 count plot sns.countplot(data = df, x = 'Address1') plt.show() idx_address = df.loc[df['Address1'] == '-'].index df.drop(idx_address..
import numpy as np import pandas as pd import json from sklean.model_selection import train_test_split with open('국민.json', 'r', encoding='UTF-8') as f: data=json.load(f) sample_df=pd.DataFrame(data) sample=sample_df.dropna() sample=sample.astype('str') y=sample.음주여부 X=sample.drop('음주여부', axis=1) y.value_counts() X_train, X_valid, y_train, y_valid = train_test_split(X,y,test_size=0.2,shuffle=Tru..
import json with open ("A0007IT.json", "r") as f: data = json.load(f) data import json with open ("A0007IT.json", "r") as f: data = json.load(f) data df_item=pd.DataFrame(data) df_item d={'Time_Departure':{'0':'11:21.0', '1':'37:52.0', '2':'54:19.0', '3':'04:57.0', '4':'02.53.0' }, 'Time_Arrival':{'0':'21:19.1', '1':'05:37.9', '2':'26:11.2', '3':'13:42.9', '4':'12:53.3' }, 'Distance':{'0':'3150'..
- Total
- Today
- Yesterday
- JDBC
- Python
- ocjap
- 프로씨
- 플러터
- xe addon
- EC
- 문자열
- XE
- 인포믹스
- ocajp
- XE3
- 파싱
- php
- C
- 이클립스
- MySQL
- KG
- 포인터
- 라이믹스 모듈
- 자바
- webix
- 자바 smtp
- 오라클
- 파이썬
- proc
- C언어
- 스크래핑
- esql
- xe애드온
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |